Saddlepoint approximation for the generalized inverse Gaussian Lévy process

نویسندگان

چکیده

The generalized inverse Gaussian (GIG) Lévy process is a limit of compound Poisson processes, including the stationary gamma and as special cases. However, fitting GIG to data computationally intractable due fact that marginal distribution not convolution-closed. current work reveals admits simple yet extremely accurate saddlepoint approximation. Particularly, we prove if order parameter greater than or equal −1, can be approximated accurately — no need normalize density. Accordingly, maximum likelihood estimation quick, random number generation from straightforward by using Monte Carlo methods, goodness-of-fit testing undemanding perform. Therefore, major numerical impediments application are removed. We demonstrate accuracy approximation via various experimental setups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Theory with the Generalized Inverse Gaussian Lévy Process By

Dufresne et al. (1991) introduced a general risk model defined as the limit of compound Poisson processes. Such model is either a compound Poisson process itself or a strictly increasing Lévy process. Their construction is based on a nonnegative non-increasing function Q that governs the jumps of the process. This function, it turns out, is the tail of the Lévy measure of the process. We discus...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The Empirical Saddlepoint Approximation for GMM Estimators

The empirical saddlepoint distribution provides an approximation to the sampling distributions for the GMM parameter estimates and the statistics that test the overidentifying restrictions. The empirical saddlepoint distribution permits asymmetry, non-normal tails, and multiple modes. If identification assumptions are satisfied, the empirical saddlepoint distribution converges to the familiar a...

متن کامل

promotion time cure model with generalized poisson-inverse gaussian distribution

background & aim: in the survival data with long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the  end  of the  study.  mixture  cure  model  was  introduced  by boag,  1949  for  reaching  a  more efficient analysis of this set of data. because of some disadvantages of this model non-mixtur...

متن کامل

An Improved Saddlepoint Approximation Based on the Negative Binomial Distribution for the General Birth Process

Daniels (JAP 1982) gave a saddlepoint approximation to the probabilities of a general birth process. This paper gives an improved approximation which is only slightly more complex than Daniels’ approximation and which has considerably reduced relative error in most cases. The new approximation has the characteristic that it is exact whenever the birth rates can be reordered into a linear increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2022

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2022.114275